Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.03.02 Гиб	ридные вычислительные системы	
наименование дисциплин	ы (модуля) в соответствии с учебным планом	
Направление подготовки / спе	ециальность	
09.03.01 Информ	иатика и вычислительная техника	
Направленность (профиль)		
09.03.01 Информ	иатика и вычислительная техника	
Форма обучения	очная	
Год набора	2019	

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
ассистент, Шаров В.	В.;канд. тех. наук, зав. каф. ВпВ, Кузьмин Д.А.
	попжность инипиалы фамилид

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Ознакомление бакалавров с основами организации и программирования гибридных вычислительных систем.

Изучение дисциплины «Гибридные вычислительные системы», соответствии с общими целями основной образовательной программы, бакалав-ром углубленного профессионального способствует получению образования, позволяющего выпускнику успешно работать в избранной сфере деятельности, обладать универсальными и предметно-специализированными способствующими его мобильности компетенциями, социальной устойчивости на рынке труда.

1.2 Задачи изучения дисциплины

Формирование у бакалавров навыков использования гибридных вычислительных систем как одного из способов решения вычислительных задач и задач обработки дан-ных требующих больших вычислительных ресурсов.

Подготовка к решению следующих профессиональных задач:

1. Научно-исследовательская деятельность:

Изучение научно-технической информации, отечественного и зарубежного опыта по тематике исследования.

Сбор, обработка, анализ и систематизация научно-технической информации по те-ме исследования, выбор методик и средств решения задачи.

Организация проведения экспериментов и испытаний, анализ их результатов.

Проведение измерений и наблюдений, составление описания проводимых исследований, подготовка данных для составления обзоров, отчетов и научных публикаций.

2. Проектно-технологическая деятельность:

Применение современных инструментальных средств при разработке программно-го обеспечения;

Применение Web-технологий при реализации удаленного доступа в системах кли-ент/сервер и распределенных вычислений;

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

• • •						
Код и наименование индикатора	Запланированные результаты обучения по дисциплине					
достижения компетенции						
ПК-1: Способен осуществлять	концептуальное, функциональное и логическое					
проектирование программны	х, программно-аппаратных,					
инфокоммуникационных средств вычислительной техники и интеграционных						
решений						
ПК-1.1: • Знать методы,						
средства, технологии						
выполнения научно-						
исследовательских работ в						

ходе проектирования программных, программноаппаратных, инфокоммуникационных средств вычислительной техники и интеграционных решений • Знать методы, средства, приёмы концептуального, функционального и логического проектирования программных, программноаппаратных, инфокоммуникационных средств вычислительной техники и интеграционных решений • Знать структуры операционных автоматов и управляющих автоматов с жесткой и программируемой логикой; основы построения функциональных схем

комбинационных и последовательностных цифровых устройств; принципы и методы функционального и

конечных цифровых автоматов и систем на их

архитектурные решения, базовые архитектурные шаблоны проектирования;

архитектуры, понятие чистой архитектуры; фазы процесса проектирования ПО, модели управления разработкой.

основе; принцип микропрограммного

критерии качества

управления

• Знать: типовые

логического проектирования

ПК-1.2: • Уметь выполнять научно-исследовательские работы в ходе проектирования программных, программно-аппаратных, инфокоммуникационных средств и интеграционных решений	
• Уметь осуществлять концептуальное, функциональное и логическое проектирование программных, программно-	
аппаратных, инфокоммуникационных средств вычислительной техники и интеграционных решений	
• Уметь решать задачи связанные с проектированием конечных цифровых автоматов и систем на их	
основе, с разработкой алгоритмов и микропрограмм их функционирования • Уметь: находить в проекте	
места применения шаблонов проектирования с учетом их особенностей и особенностей решаемой задачи; оценивать	
качество архитектурных решений, предлагать варианты их улучшения; участвовать в командной разработке ПО,	
управлять командой, используя различные модели разработки.	

ПК-1.3: • Владеть навыками	
выполнения научно-	
исследовательских работ в	
ходе проектирования	
программных, программно-	
аппаратных,	
инфокоммуникационных	
средств	
• Владеть методами,	
средствами, приёмами	
концептуального,	
функционального и	
логического проектирования	
программных, программно-	
аппаратных,	
инфокоммуникационных	
средств вычислительной	
техники и интеграционных	
решений	
• Владеть навыками	
применения принципов и	
методов обоснования	
принимаемых проектных	
решений, навыками	
проведения итерационной	
корректировки принимаемых	
проектных решений по	
созданию и разработке	
конечных цифровых	
автоматов, функционально-	
логическому моделированию	
отдельных логических	
элементов и конечных	
цифровых автоматов на их	
основе • Владеть: языком UML,	
инструментами моделирования – plantuml или	
аналогами; PIN-нотацией	
(Pattern Instance Notation),	
навыками эскизирования	
архитектуры ПО; навыками и	
инструментальными	
средствами командной	
разработки.	
puspusorkii.	

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется с применением ЭО и ДОТ URL-адрес и название электронного обучающего курса: https://e.sfukras.ru/course/view.php?id=18190.

2. Объем дисциплины (модуля)

		Сем		
Вид учебной работы	Всего, зачетных единиц (акад.час)	<u>ec</u>	2	
Контактная работа с преподавателем:	2,89 (104)			
занятия лекционного типа	1,44 (52)			
практические занятия	1,44 (52)			
Самостоятельная работа обучающихся:	3,11 (112)			
курсовое проектирование (КП)	Нет			
курсовая работа (КР)	Нет			
Промежуточная аттестация (Зачёт) (Экзамен)	1 (36)			

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

				Кол	нтактная р	абота, ак	. час.		
№ п/п		Занятия лекционного типа		Занятия семинарского типа				Самостоятельная	
	Модули, темы (разделы) дисциплины			Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		работа, ак. час.	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Гі	ибридные вычислительные системы								
	1. Цель, задание и содержание курса, рекомендации по изучению курса. Основная терминология и определения.	2							
	2. Обзор современного состояния в области суперкомпьютерных технологий.	4							
	3. Гибридные вычислительные системы. Место гибридных кластерных систем. Области использования. Анализ Тор500 лучших суперкомпьютеров мира. Суперкомпьютеры в вузах России.	6							
	4. История развития GPU. Перспективы GPU.	4							
	5. Устройство современных GPU. Основные составные элементы аппаратной реализации GPU Nvidia.	6							
	6. Архитектура CUDA.	7							
	7. Программная модель вычислений CUDA.	7							

8. Основы программирования CUDA GPU.	4					
9. Иерархия памяти CUDA GPU.	4					
10. Вопросы производительности и точности вычислений	4					
11. Системы пакетной обработки для гибридных вычислительных систем	2					
12. Система мониторинга Ganglia	2					
13. Изучение сценария работы пользователя с гибридными кластерными системами. Основные утилиты.		8	12			
14. Введение в CUDA. Установка CUDA Toolkit. Изучение архитектуры CUDA.		8	14			
15. Эффективное использование памяти в CUDA.		8	16			
16. Профилирование программы на GPU.		12	12			
17. Мониторинг гибридного кластера с помощью Ganglia.		8	12			
18. Изучение локальной системы пакетной обработки заданий Torque.		8	12			
19. Изучение теоретического материала					36	20
20. Подготовка ответов на практические задания					36	74
21. Изучение теоретического материала					20	70
22. Подготовка ответов на практические задания					20	26
Всего	52	52	78		112	190

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Боресков А. В., Харламов А. А. Основы работы с технологией CUDA: учебное пособие(Москва: ДМК Пресс).
- 2. Линев А. В., Боголепов Д. К., Бастраков С. И., Гергель В. П. Технологии параллельного программирования для процессоров новых архитектур: учебник для студентов вузов(Москва: Изд-во МГУ).
- 3. Боресков А. В., Харламов А. А., Марковский Н. Д., Микушин Д. Н., Мортиков Е. В., Мальцев А. А., Сахарных Н. А., Фролов В. А. Параллельные вычисления на GPU. Архитектура и программная модель CUDA: учебное пособие для студентов вузов, обучающихся по напр. 010400 "Прикладная математика и информатика", 010300 "Фундаментальная информатика и информационные технологии" (Москва: Изд-во Московского университета).
- 4. Гергель В. П. Современные языки и технологии параллельного программирования: учебник для студентов вузов, обуч. по направлениям 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информационные технологии" (Москва: Издательство Московского университета).
- 5. Сандерс Д. Технология CUDA в примерах: введение в программирование графических процессоров(Москва: ДМК Пресс).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. OC Linux или Windows.
- 2. Среды разработки С++ и CUDA Toolkit.
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. Не требуется

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Аудитория, оборудованная:

- -проекционным оборудование рабочего места преподавателя;
- -маркерной доской.

Компьютерный класс, оборудованный:

- -12-14 рабочими местами, позволяющими выполнять работу в парах как во вре-мя лекций, так и во время лабораторных работ;
- -проекционным оборудование рабочего места преподавателя;
- -маркерной доской.
- -Компьютеры должны функционировать под управлением операционных систем Linux и MS Windows.